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EXECUTIVE SUMMARY 
Protection of commercial nuclear fuel cycles against adversary groups who may attempt to steal weapons-usable 

material is an issue of interest to the U.S. Department of Energy, Office of Nuclear Energy. The wide array of 

potential nuclear fuel cycle configurations and the security measures that could be deployed to protect them pose 

a daunting system design problem.  In general, there are billions of potential design configurations.  Moreover, the 

design choices are not independent – the effectiveness of one design feature or security measure can affect the 

desirability of other design choices.   

To explore this issue, we develop a mixed-integer optimization problem that solves a complex decision tree to 

allocate security resources across a commercial nuclear fuel cycle configuration. A nominal UREX+ reprocessing 

facility is used to demonstrate how the model allocates resources across a particular fuel cycle facility and shows 

how the problem can be scaled up to include other facilities and design features in the fuel cycle. 

In our model, the defender first chooses a set of safeguards to implement in order to mitigate the risk of a terrorist 

theft from various unit operations in the reprocessing facility. The attacker observes the defender’s strategy choice 

and executes an attack to acquire material, including the possibility of declining to attack at all. The model 

considers the terrorist as an intelligent adversary with a set of attack strategies known to the defender. The 

strategic choices made by both the defender and attacker affect the probability of a successful attack by the 

terrorist and in turn affect the distribution of consequences to the defender. We use a decision tree to illustrate 

the interactions among costs, decisions, correlated uncertainties, and outcomes, and then show how to formulate 

the problem as a mixed-integer program with an equivalent solution.  The novel features of our formulation 

include the following.   

First, as discussed above, we use a sequential game-theoretic formulation (a Stackelberg game).  This formulation 

assumes the attacker can observe the defender’s actions before the attack is executed.  Many previous game-

theoretic studies have assumed attacker and defender act simultaneously without knowledge of the other’s 

strategy choice.  We believe the sequential game formulation is more applicable for knowledgeable insider 

adversaries, the focus of this study. 

Second, we build on our previous work that has developed a methodology to reflect the correlation among 

probability distributions represented as discrete chance nodes in a decision tree.  We illustrate how this 

methodology can be applied to two chance nodes in a decision tree that relate the quality of the materials that 

might be stolen or diverted by an adversary with the yield of a weapon that might be constructed from that 

material.  In a decision tree, the dependence of the yield on the quality of the material could be modeled with 

conditional probabilities of the weapon yield given the quality of the materials obtained. For three outcome 

discretizations, this would require the assessment of nine conditional probabilities from domain experts as part of 

the model building effort.  In contrast, our methodology will allow this same representation of the tree based on 

the assessment of the correlation between these two chance nodes by the experts, which we believe is a much 

easier and more reliable assessment task.  The advantage of this approach increases as the number of dependent 

chance nodes grows in a decision tree representation of this problem. 

Third, we extend this approach to the approximation of the dependence between discrete binary events such as 

success or failure represented by binary chance nodes in a decision tree or in the special case of a probabilistic risk 

analysis (PRA) based on an event tree.  This extension is a novel application in this domain, and uses Monte Carlo 

simulation to determine the appropriate conditional probabilities on the binary chance nodes when the number of 

correlated uncertainties is more than two. 
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Fourth, we show how these decision trees or probability trees can be formulated and solved as equivalent integer 

programming (IP) problems.  The advantages of the IP representation include the opportunity to use the 

computing power associated with powerful optimization solver algorithms available on high speed computers to 

solve very large versions of these trees, and the ability to include several such models of different facilities into a 

much larger IP with connecting constraints that represent budget restrictions, number of available inspection 

opportunities in a given time window, or other dependencies among these facilities.   

Policy makers can use the resulting model to inform their decisions about how to assess terrorism risk and to 

safeguard the commercial nuclear fuel cycle. 
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1 INTRODUCTION 
The large number of potential domestic sources of nuclear materials in current and future domestic nuclear fuel 

cycle designs presents a challenge to fuel cycle and security system designers   A methodology that could identify 

worst-case theft scenarios would allow counterterrorism efforts to focus on sources and material acquisition steps 

that a highly capable adversary is likely to use. Analytical methods to identify effective countermeasures against 

these scenarios would also help to manage this risk.  These countermeasures could include reconfiguration of fuel 

cycle unit operations, intelligence collection assets, security at domestic nuclear installations, domestic 

checkpoints, radiation detectors, and other means to prevent theft of nuclear material, or to interdict an 

adversary.  

The objective of this research is to develop integrated models of adversary behavior, countermeasure 

effectiveness, and system design that can be used to guide nuclear fuel cycle design efforts. The model must take 

into account adaptive (optimizing) adversary behavior and must provide a means for automated search through a 

large space of potential fuel cycle designs to find designs that are effective against such an adversary.  Budget, 

logical, and other constraints on adversary behavior or fuel cycle design must also be satisfied. This work will focus 

on selected nuclear energy systems of current interest to DOE, and will demonstrate best practices and also 

highlight gaps in existing methodologies for modeling these problems, and thereby help focus R&D on improved 

methods. 

Our work builds on previous efforts to combine aspects of game theory and traditional decision analysis, 

specifically decision trees, to take advantage of the concepts of the former and the practical implementation ease 

of the latter.  We illustrate these methods utilizing a suite of nuclear terrorism threat scenarios directed at the 

domestic nuclear power infrastructure in which an adversary steals nuclear materials and subsequently fabricates 

an improvised nuclear device (IND).   

1.1 TERRORISM THREATS 

Nuclear fuel cycles must be protected against insider and outsider threats. Outsider threat groups would typically 

attack a facility using stealth and violence against barriers and personnel. The adversary must gain access to the 

material and exit the facility without being detected and interdicted by the guard force. Because many of the acts 

are overt, outsider protection is largely a matter of added security measures such as fences, motion sensors, 

cameras, and guards.    

Insiders have authorized access to the facility and general knowledge of production processes, procedures, and 

security measures. In addition, some insiders have the authority to perform access control checks, material 

movements, or other critical functions. Protection against insiders requires effective design of unit operations, 

procedures, and material forms. Protection against the insider threat is generally considered more challenging. In 

this study, we focus on insiders stealing weapons-usable material in order to construct an IND, but the approach 

could easily be modified to analyze outside threats.  

Detection and interdiction is based upon the system performance, which may not be a simple sum or product of 

performance measures of individual components.  Furthermore, there is a need to assess performance of the 

system against all possible threat scenarios. Sometimes interactions or synergies among security components are 

present. For example, data from radiation detectors and surveillance video could be combined to track the 

movement of radioactive sources at a facility. This information could be checked with inventory control systems in 

order to detect unauthorized movement. To further assist in data interpretation, machine-learning techniques that 

learn normal behaviors of personnel and material and then flag anomalous behaviors might be used.  
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1.2 PREVIOUS NUCLEAR FUEL CYCLE EVALUATIONS 

The Department of Energy’s Office of Nuclear Energy (DOE-NE) has undertaken a methodical screening of 

hundreds of potential fuel cycle designs with a wide range of unit operations and material forms [DOE-NE 2012]. 

The project initially considered over 800 fuel cycle options, but aggregated them due to time constraints imposed 

on the study. The study developed a scoring system for the evaluation of fuel cycles with regard to a number of 

different objectives, including nuclear material security (i.e., protection against sub-national threats). They 

concluded that because physical protection can be added to any fuel cycle at a cost, the primary differentiator 

among fuel cycles is the material attractiveness at each stage of the process. Fuel cycles are evaluated on this 

basis. 

The Proliferation Resistance and Physical Protection (PRPP) Evaluation Methodology Working Group has also been 

developing and applying methods for nuclear terrorism risk analysis [PRPP 2006]. The study describes the four 

physical protection vulnerability assessment steps as: 

1. System element identification 

2. Target identification and categorization 

3. Pathway identification and refinement 

4. Estimation of performance measures 

Upgrades analysis is a fifth step that may be required if system effectiveness goals are not achieved. In this step, 

candidate upgrades to barriers, sensors, and procedures are evaluated to identify a system configuration that 

meets performance goals at minimum cost.  This fifth step is the focus of the work described here. We focus on 

developing more detailed game-theoretic models of specific facilities and security systems, and this work is 

complementary to previous high-level evaluations in that regard. 

Finally, additional studies of nuclear smuggling risks provide analytical tools that may be useful for assessing 

nuclear fuel cycle security.  An overview of methods used for Homeland Security analysis is included in Maurer 

(2009). Network interdiction models are described in Wood (2011). 

1.3 EXAMPLE FUEL CYCLE CONFIGURATION, THEFT STRATEGIES, AND SECURITY UPGRADES 

In this study, we illustrate our algorithms using examples developed by Ward (2012) of “attacker and defender 

strategies” related to efforts by an insider (attacker) to acquire weapons-usable nuclear materials from a UREX+ 

aqueous reprocessing facility (defender). Ward (2012) has provided a diagram of the facility showing potential 

points of diversion. They are: diverting spent fuel from storage, diverting transuranic (TRU) material into the hulls, 

diverting material from any of the solvent extraction steps, or diverting TRU product from storage. Diversion of 

solution into hulls or from the extraction steps can be done with or without replacement with nitric acid to 

maintain mass and volume levels.  For each of these points of diversion, she has identified potential actions that 

might be taken by an insider (attacker) to acquire nuclear materials and corresponding defensive actions that 

might be implemented by the facility managers (defender) to detect these threats. 

Our primary focus is on a Stackelberg, or sequential-play, game formulation rather than a simultaneous-play 

Cournot game with Nash equilibrium. We believe the sequential play game with the defender forced to move first 

provides a useful perspective and analytical framework for an insider attacker who is afforded the opportunity to 

observe operations and security measures over long periods.  In particular, it may be difficult to identify the 

potential insiders (attackers) and so the defender must move first in an attempt to provide some protection of the 
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facility and the adversary can choose to act after the defensive strategy of the system has been chosen. Solution 

algorithms for Stackelberg games have been developed by Bard (1998), Wood (2011), and Paruchuri, et al. (2008).  

1.4 EXAMPLE AND MOTIVATION 

To motivate the problem and to illustrate the framework used in our methodology, we provide the following 

simple example with a limited number of decision nodes and uncertainties. The setup is a nominal nuclear fuel 

cycle facility. The defender (United States) makes two decisions on whether or not to implement two particular 

safeguards.  The attacker, having – at least partially – observed the decisions made by the defender, chooses 

whether or not to attack the facility. If he attacks, it is uncertain whether the attack will be successful. If it is 

successful there is additional uncertainty about the quality of the material stolen during the attack and the nuclear 

yield that can be produced from the material. The decision tree as implemented by the commercial software 

package DPL is provided in Figure 1.  

 

Figure 1: Example of a simple decision tree 

It is important to note that the probabilities and consequence values used in the model are given merely for the 

purposes of illustration. They are not informed by any unclassified or classified information regarding the 

probability of an attack or the real-world effectiveness of any particular safeguard. The probabilities have been 

provided solely to make the examples easier to understand by the reader and to make the model operational. The 

reader should not infer anything further from these probabilities or values. 

1.4.1 DECISIONS 
The defender can choose to implement none, one, or both of the safeguards.  In this example, the proposed 

alternative safeguards are to implement cameras and surveillance equipment and to implement an inventory 

verification system. These safeguards are chosen from the defender-attacker strategy matrix provided by Ward 

(2012) and will be further discussed later in the report. Implementing a safeguard increases the probability of 

detection of an attacker, and therefore decreases the attacker’s probability of the successful theft or diversion of 

nuclear materials, but the defender incurs a cost.  In our report we assume that detection is equivalent to 

interdiction; that is, if an attack is detected it is prevented.  

After observing the defender’s strategic choices, the attacker decides whether or not to attack. The outcomes of a 

successful attack are positive values representing a loss to the defender, so the defender wants to minimize the 

expected value at his decision node (smallest loss) whereas the attacker maximizes this expected value (largest 

value is best). The probability of a successful attack for the terrorist is determined by the defender’s strategy.  In 

this initial example the attacker and defender realize the same outcomes after the attack but the defender pays for 

each safeguard deployed and the attacker incurs a loss for an unsuccessful diversion. 
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Figure 2: Defender and Attacker Strategies 

The defender’s decisions are pictured at the top of Figure 2. Choosing to use the cameras and surveillance 

safeguard costs the defender 10 whereas implementing the inventory verification safeguard is more expensive 

with a fixed cost of 18. These unitless costs are notional amounts used for illustration purposes only. The costs are 

additive; choosing both safeguards costs 28. Naturally, opting to not implement a safeguard does not incur a direct 

cost.  

Costs are not considered in the decision node for the attacker. An argument could be made that there are some 

costs faced by the attacker in moving an attack plan forward. However, we feel those costs can best be captured as 

the impact of a failed attack and these costs are reflected in the outcome branch of the chance node 

corresponding to this possibility. For this example, we assumed that an unsuccessful attack was undesirable to the 

attacker since it could possibly: (1) reveal an insider if one existed, (2) possibly result in an intelligence gain to the 

U.S., (3) be a rallying event for the U.S. (i.e. we caught the terrorists), or (4) be a public setback for the terrorist 

group and its supporters. As a result, we assigned an arbitrary cost of 2 to an unsuccessful attack, which is shown 

in the chance node of Figure 2.  In the case of a successful attack, the outcomes can account for any costs to 

initiate the attack. 

Note that we have explicitly modeled the attacker’s decision based on the assumption that the attacker has full 

knowledge of the defender’s strategies and of the values of the outcomes.  An alternative that could easily be 

incorporated into our models is to model the attacker’s strategy with a chance node.  This would reflect the 

defender’s uncertainty about which strategies the defender has actually implemented, about the effectiveness of 

these defensive strategies, or uncertainty about the attacker’s motivations and capabilities from the viewpoint of 

the defender.  The pros and cons of modeling the attacker as a rational decision maker, versus taking a more 

probabilistic view of the attacker’s actions, are discussed by Parnell, et al. (2010), and by Ezell and Collins (2010). 

1.4.2 UNCERTAINTIES 
The attacker has to consider not only the probability of being successful but also the probability distribution of the 

quality of the material stolen and the yield from any device that can potentially be built from that material. We 

first discuss the probability of the defender detecting an attack and the probability that the attacker would be 

successful. All device yield relationships described in this report are also notional. 
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1.4.2.1 PROBABILITIES OF DETECTION AND SUCCESS 

An attack strategy is successful if and only if the attacker is undetected by all of the safeguard measures in place. 

The probability of successfully passing one safeguard undetected is . In this example, we 

consider the effectiveness of all safeguards to be independent. In other words, the effectiveness (or probability) of 

inventory verification in detecting an attack is independent of the effectiveness of cameras and surveillance in 

detecting an attack.  If is the set of all defender strategies, S is the set of all safeguards, and is the set of all 

attack strategies then the probability of a successful attack by the terrorist is , where is 

the chosen attack strategy, is the defender’s safeguard, and is the probability that action a is detected if 

safeguard s is implemented.  

While the probability of detection for each safeguard is treated independently, it is important to point out that the 

probability of detection is conditional on all of the safeguards implemented. As shown in Figure 3, the notional 

probability of detecting a spent fuel rod theft is 0.8 if the cameras and surveillance strategy is implemented; 

otherwise, it is zero. Similarly, the assumed probability of detecting a spent fuel rod theft is 0.85 if the inventory 

verification strategy is implemented; otherwise, it is zero.  

 

Figure 3: Conditional Probability of Detection 

In this example, the attack set is , and the defender set 

is . To show how the probability of success is 

calculated, consider the four possibilities in Table 1. 

Table 1: Calculating the Probability of Successful Theft/Diversion 
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and other government agencies – can improve fuel cycle security in the face of terrorism risk.  As a result, these 

probability calculations should be interpreted as marginal improvements relative to the status quo level of 

security. 

1.4.2.2 QUALITY OF MATERIAL STOLEN AND YIELD 

The next set of uncertainties relates to the consequences of a successful attack, which occurs in the tree only if the 

terrorist chooses to attack and is successful. For this simple example, we assume the notional value to the 

adversary of the yield of a nominal improvised nuclear device (IND) made from the stolen material is given by a 

continuous beta distribution with  and and bounds of .  The attacker can take the form of 

many terrorist groups or actors, each of which may have different capabilities and knowledge. Terrorist acquisition 

of the material does not necessarily indicate the capability of the attacker to construct a weapon or some other 

device to be used against the defender. Yield can depend on multiple factors including the quality of the stolen 

material, but also the capabilities of the adversary to transform the material into another usable form for their 

purposes without being caught.  

This example is hypothetical but the units of this yield distribution could be some measure of the explosive or 

destructive power of the device, or some assessment of the value a terrorist organization places on the successful 

development and deployment of the device. Then, we use the Extended Pearson-Tukey method (

to discretize the continuous beta distribution by assigning the probabilities of 0.185 to its 5
th

 and 95
th

 

percentiles, and 0.63 to its median.  For example, the 95
th

 percentile of Beta (2,4) with bounds [50, 100] is 82.87. 

This approximation is shown in Figure 4 where the continuous beta distribution is pictured and the 5
th

, 50th, and 

95
th

 percentiles are labeled to correspond with the discrete representation on the right. 

The same approach can be used to discretize the continuous distribution for the quality metric of the material 

stolen; assuming arbitrarily that this value is given by a  distribution with bounds of [0,1].  This latter 

result is also shown in Figure 4.  The distribution over the quality of the material stolen captures the uncertainty 

over nuclear material stability, quality, and other related factors that would be important for the transport, 

handling, and use of the material. 

The material quality and yield distributions are shown separately; however, it seems plausible to assume that 

these distributions are not independent. A higher quality of nuclear or radiological material that is stolen should 

lead to a greater yield for an IND, on average. For example, spent fuel burn-ups are associated with the quality of 

material. A discussion of how to represent correlated uncertainties in decision trees is discussed in more depth in 

Section 4.  However, to illustrate this simple example, we assume the distributions are independent. 
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Figure 4: Discretization of Continuous Distribution 

1.4.3 SOLUTION  

Solving the decision tree using the DPL software, we obtain the optimal policy tree shown in Figure 5. It shows that 

the defender should implement the containment and surveillance safeguards but should decline to do inventory 

verification because of the latter’s high cost relative to the decrease in probability of the attacker’s success (bold 

paths in the decision tree indicate the optimal path for a decision maker; e.g. it is better for the defender to 

implement the inventory verification safeguard in Figure 5). The attacker chooses to attack based on these 

defender choices since the expected losses to the defender are larger for an attack compared to the no attack 

option. 

 

Figure 5: Policy Tree for the Simple Example 
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In Figure 5, the values in brackets represent the optimal value to the defender from that point forward in the tree. 

The following steps explain how the values are obtained. The expected value of the yield in Figure 4 is 

0.185*82.87+0.63*65.69+0.185*53.82=66.673, which represents the expected value of a successful attack. If the 

defender’s strategy is to implement containment and surveillance (C/S) but not inventory verification, then the 

probability of a successful diversion is 0.2 (refer to Table 1). This means the expected value of an attack is 

therefore 0.2*66.673=13.335. The defender incurs a cost of 10 to implement the safeguard resulting in an 

expected cost to the defender of 23.335. This value is captured in Figure 5 by the bracketed value at the leftmost 

edge of the tree. The non-bracketed values represent the costs incurred by that decision. The choice to implement 

C/S costs 10 and you can see in the upper most branch of the figure that implementing inventory verification costs 

18. From each node in the tree, the optimal expected value is shown in brackets. If the defender chooses not to 

implement C/S then the best expected value he can obtain is 28.001 

Our general decision tree framework for the analysis of a fuel cycle facility can be summarized as follows. The 

defender makes decisions about the safeguards to implement, considering the costs of implementation and the 

influence those decisions have on the probability of detection (and thus on the attacker’s decisions). The attacker 

uses this information to make an optimal choice regarding whether or not to attack the target. Hence, the model 

provides a measure of the deterrent value of security measures. 

The corresponding influence diagram shown in Figure 6 can also illustrate the relationships among the decisions, 

uncertainties, and parameters in this model. The defender’s actions affect the probability of detection, which in 

turn influence the chance of success. Given a successful attack, the uncertainty over the quality of material stolen 

and the yield are characterized by probability distributions. 

 

Figure 6: Influence Diagram for Small Example 

In Section 2 we will examine a more comprehensive model with a larger set of defender and attacker strategies 

including additional targets in an UREX+ aqueous reprocessing facility. We also consider an example of protracted 

theft. The model will also be formulated as a mixed-integer program (MIP) to handle a larger scale problem and 

will be solved using GAMS optimization software. 
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2 STRATEGIES 

2.1 DEFENDER-ATTACKER STRATEGY MATRIX 

The example from Section 1 used a limited number of defender-attacker strategies. These were selected from a 

more comprehensive list related to an UREX+ aqueous reprocessing facility developed by Ward (2012) and based 

on work by Durst, et al. (2007), Pereira (2008), and Todd (2008).  

Figure 7 from Ward (2012) depicts the process steps at a UREX+ aqueous reprocessing facility. Fuel is received in 

spent fuel bundles from a reactor. Fuel attributes are measured using non-destructive assay techniques (NDA) and 

operator declarations are compared to inspector burn-up calculations and NDA measurements. The fuel is then 

stored until use. The storage is under constant containment and surveillance (C/S), including cameras and 

directional radiation detectors. 

The spent fuel enters front-end operations and is first mechanically chopped and sheared. The spent fuel pellets 

are then dissolved in nitric acid; undissolved material, including cladding and undissolved fuel, are removed from 

the process stream (“hulls”).  The remaining material is known as raffinate, and it then enters a series of 

centrifugal contactors or mixer settlers that comprise the UREX extraction step. In this step, uranium and 

technetium are co-extracted from the solution using tributal phosphate (TBP) as a solvent.  The uranium and 

technetium are then separated and stored independently. 

After the uranium is extracted from solution, the remaining solution contains TRU products (Pu, Np, Am, Cm), 

fission products and lanthanides. CCD-PEG solvent is used to extract the major lanthanides from the solution, 

namely Cs and Sr, which pose a large repository burden due to their short half-lives and high heat generation rates.  

The solution is then sent to the TRUEX process, where fission products are extracted to be stabilized and stored.  

Finally in the TALSPEAK process phase, the TRU, including plutonium, is separated out of the solution. The 

plutonium is left with the TRU and is stored in solid form on-site until it is shipped. 

In Figure 7, the red boxes show potential points of diversion in an aqueous UREX+ process. The possible points of 

diversion are: diverting spent fuel from storage, diverting TRU into the hulls, diverting material from any of the 

solvent extraction steps, or diverting TRU product from storage. Diversion of solution into hulls or from the 

extraction steps can be done with or without replacement with nitric acid to maintain mass and volume levels. 
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Figure 7: Diagram of a UREX+ aqueous reprocessing facility. Source: Ward (2012) 

Within the context of an aqueous UREX+ reprocessing facility, Ward (2012) identified seven attacker options for 

the theft or the diversion of radioactive materials.  In addition, she identified ten potential defender options to 

safeguard these materials at a domestic facility.  Then, for each of the attacker/defender pairs, she indicated 

whether the defender strategy would be effective in detecting the attacker option in a matrix (see Table 2). The 

names of these strategies shown in Table 3 and additional details regarding the defender strategies are provided in 

Appendix A. 

Table 2: Defender-Attacker Strategy Matrix 

 Attacker Strategies 

Defender 
Strategy 

1 2 3 4 5 6 7 

A X     X  

B X X X X X X  

C  X X X X   

D   X  X  X 

E   X  X  X 

F X X X X X X  

G  X X X X   

H  X X X X   

I  X X X X   

J       X 

Source: Ward (2012) 

An X in the defender-attacker strategy matrix indicates that the safeguard strategy in the leftmost column of that 

row is an effective countermeasure to the attacker strategy in the uppermost cell of that column. For example, the 

X in cell (F,2) means that safeguard F (containment and surveillance, C/S) can be deployed to mitigate the risk from 

attacker strategy 2 (Divert solution into hulls). The absence of a X in cell (F,7) indicates that safeguard F 
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(containment and surveillance) has no ability to effectively mitigate risk from attacker strategy 7 (Falsify spent fuel 

declarations).  

Table 3: Strategy Descriptions 

        Attacker Strategies        Defender Safeguards 

 
1. Divert spent fuel rod 

2. Divert solution into hulls 

3. Divert solution into hulls with 

replacement 

4. Divert solution from extraction 

5. Divert solution from extraction with 

replacement 

6. Divert TRU product from storage 

7. Falsify spent fuel declarations 

 
A. Item Counting 
B. Inventory Verification (interim or annual) 
C. Design information verification 
D. Non-Destructive Assay techniques (Gross 

neutron counting; Pu/Cm-242 ratio 
counting) 

E. Destructive Analysis 
F. Containment and Surveillance (C/S) 
G. Solution Measurement and Monitoring 

System (SMMS)  
H. Plutonium Inventory Measuring System 

(PIMS)  
I. Hybrid k-edge densitometry  

        J. Lead slowing-down spectroscopy   

Source: Ward (2012) 

The attacker strategies considered are primarily diversion/theft scenarios. Therefore, the defender strategies in 

Table 2 are restricted to actions that are relevant for diversion/theft attacks. 

Defender strategies have varying levels of effectiveness depending on the attack scenario. Recall the example from 

Section 1. In Figure 3, we assumed that implementing containment and surveillance resulted in a probability of 

detection of 0.8. This was specific to that attack scenario. The probability of detection for a different attack 

scenario could be 0.9, for example. 
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3 DECISION TREE MODEL 
We use a decision tree to represent a sequential leader-follower (Stackelberg) game theory formulation. An initial 

set of decisions is made by a defender regarding which safeguards to implement to mitigate the risk of a terrorist 

attack. This set of safeguards represents the defender’s strategy in the game. After observing the defender’s 

strategy, the attacker then decides whether or not to attack a set of potential targets. The positive-valued payoffs 

represent a loss to the defender and therefore the defender wishes to minimize the expected value of his payoff. 

The attacker desires the opposite, to inflict as much damage on the defender as possible. The attacker’s objective 

is to maximize these expected payoffs. 

3.1 STRATEGIES 

We now consider a broader selection of targets and safeguards in our illustrative model than we did for the simple 

model of Section 1. However, incorporating all of the possible strategies from Table 2 would be intractable for the 

purposes of this report. A smaller subset was taken that demonstrates the complexity of the problem and the need 

for alternative formulations while still providing a credible model with realistic aspects of nuclear fuel cycle 

security. The reduced defender-attacker matrix used (Table 4 and Table 5) is adapted directly from Table 2 and 

Table 3 (Ward, 2012). 

Table 4: Reduced Defender-Attacker Matrix (top), Strategy List (bottom) 

 1 3 4 6 

A X   X 

B X X X X 

F X X X X 

 

Defender Safeguards Attack Scenarios 

(A) Item Counting 
(B) Inventory Verification 
(F) Containment and Surveillance  
 

(1) Divert Spent Fuel Rod 
(3) Divert Solution into Hulls (w. replacement) 
(4) Divert Extraction Solution - UREX 
(6) Divert TRU Product from Storage 
 

 

Table 5: Strategy Descriptions 

Identifier Strategy Description 

A Item Counting Used to identify missing discrete items, e.g. spent fuel rods, solid TRU 
product ingots 

B Inventory 
Verification 

Identifies diverted materials through monthly/interim and annual 
inspections 

F Containment and 
Surveillance 

Includes cameras and other surveillance equipment. Helpful in storage 
areas where little movement is generally expected. 

1 Divert spent fuel 
rods 

Theft of spent fuel rods from spent fuel storage area 

3 Divert solution into 
Hulls 

Can be done with or without replacement. Without replacement can be 
detected by mass and volume measurements. With replacement could 
pass mass and volume measurements, but the solution density will be 
altered 

4 Divert extraction 
solution from 

Also can be done with or without replacement; same considerations as 
solution diversion into hulls. This includes options to steal from UREX 
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Storage solution extraction, CCD/PEG, TRUEX, or TALS-PEAK 
6 Divert TRU product 

from storage 
Diversion of TRU product from the TRU+Pu product storage area 

Source: Rebecca Ward (2012) Defender-Attacker Matrix 

As we discussed earlier, the defender’s strategy comprises a set of safeguard decisions. The number of strategies is 

determined by calculating the number of combinations of individual safeguard options. In this illustration, the first 

two safeguards have two options (yes/no) and the last safeguard has four options (cameras, detectors, both, or 

none). This results in  strategies which are fully enumerated for clarity in Table 6.  

Table 6: Enumeration of defender strategies 

Strategy Item Counting Inventory Verification Cameras Rad. Detectors Both 

1 Y Y Y   

2 Y Y  Y  

3 Y Y   Y 

4 Y Y    

5 Y  Y   

6 Y    Y  

7 Y    Y 

8 Y     

9  Y Y   

10  Y  Y  

11  Y   Y 

12  Y    

13   Y   

14    Y  

15     Y 

16      

 

We illustrate these strategies in the context of an aqueous UREX+ reprocessing facility (Ward 2012). These are 

realistic safeguards a defender can implement in the facility and could also be viewed as improvements to existing 

safeguards currently in place. The defender can choose any combination of safeguard options, resulting in a 

growing number of strategies (which includes the set of safeguard choices). For example, on strategy implements 

item counting and inventory verification, but no containment and surveillance safeguards. A different strategy 

(Strategy 1) would include the previous safeguards but add cameras as well.  

Whereas the defender can choose a portfolio of options which is considered as one strategy, we limit the attacker 

to choosing one attack scenario, including the option to not attack. The exception to this is the case of a protracted 

theft which we discuss later. 

3.2 DECISION TREE 

The commercial decision tree software DPL was used to model the strategies shown in Table 6. The collapsed full 

tree is provided in Figure 8 below. The defender’s choices are made and then the attacker, having observed those 
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decisions, chooses a target to attack (if any). If the terrorist does attack a target and is successful, the attacker and 

defender then observe uncertain probability distributions for the quality of the material and the yield obtained. 



26 
 

 

 

Figure 8: Decision Tree Formulation with 3 defender safeguards, 9 attack scenarios 
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As we have mentioned, the defender’s decisions compose a particular strategy. Each path through the defender 

decision tree represents a particular strategy from Table 6 and is illustrated in Figure 9.  Strategy 1 consists of 

implementing item counting, inventory verification, and a containment and surveillance system with cameras. 

Strategy 9 is similar but with no item counting safeguard. Strategy 16 is the choice to deploy none of the 

safeguards considered; again this may be more accurately described as the decision to not improve safeguards 

already in place.  In Figure 8 we model each of the attacker’s choices as a unique decision node, e.g. Yes Divert 

from Storage and Yes Divert from UREX.  This is done for modeling convenience, and the full set of attacker 

decisions could be combined into a single decision node analogous to the representation in the simple model in 

Figure 2. 

 

Figure 9: Defender's Strategy 

It is important to recall that the safeguard selections influence the probabilities of a successful attack. The 

likelihood of a successful diversion of spent fuel rods, for example, depends on which safeguards are implemented.  

The right hand side of Figure 8 shows the full decision tree for the attacker, including the resulting uncertain 

payoffs. However, we should call attention to the fact that this subtree appears in the model 16 times, once for 

each defender strategy, and would be appended to each of the 16 end nodes in Figure 9. 

The model in Figure 8 only reflects a subset of defender and attacker scenarios from Ward (2012); the fully 

expanded tree is much larger than our simple example. The decision tree representation is advantageous because 

of the visibility of the decision structure and the decisions of the defender and attacker.  The policy tree generated 

by the DPL software is shown in Figure 10 and illustrates the ease with which the optimal strategies can be 

identified.
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Figure 10: Policy Tree 
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The interpretation of the tree in Figure 10 is as follows. The defender chooses to implement inventory verification 

and cameras from his available options and incurs a cost of 5. The attacker, observing these choices, then 

determines their optimal attack strategy. Basing his decision on the expected value (including the payoffs and 

success uncertainties), he chooses to attack the TRU+Pu storage area to divert TRU product. As highlighted in 

Figure 11 (a zoomed in version of Figure 10) the attacker observes that the safeguards implemented leave a 14% 

chance of a successful attack and weighs that against the potential payoffs. The expected value of the attack, if 

successful, is 78.748 to the attacker. Considering the loss of 2 incurred for a failed attack, the attacker has an 

expected value for this scenario of 17.045. The values shown in the figure are calculated in the same fashion as 

those in Figure 5 and the interpretations of the bracketed and non-bracketed values are the same. 

 

Figure 11: Subsection of Figure 10, showing the expected values 
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The decision tree offers an easy way to view and interpret the decisions made. However, it becomes unwieldy 
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Figure 12: Expanded policy tree 
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[ - 71. 780]  Low 

Yield  SNF St or age 

 63%  
[ - 81. 191]  M edium  

 - 92. 106, 0. 000 19%  
[ - 97. 106]  High 

 - 81. 871, 0. 000 63%  
[ - 86. 871]  M edium  

 - 71. 913, 0. 000 19%  
[ - 76. 913]  Low 

Yield  SNF St or age 

 19%  
[ - 86. 922]  Low 

Q ualit y of  M at er ia l St olen SNF St or age 

 3%  
[ - 81. 251]  Yes  

 - 2 . 000, 0 . 000 97%  
[ - 7 . 000]  No 

Suc cess f u l Fue l Rod Div er sion? 
[ - 9 . 228]  Yes  -  Fue l Rod Diver sion 

 - 83. 067, 0. 000 19%  
[ - 88. 067]  High 

 - 69. 328, 0. 000 63%  
[ - 74. 328]  M edium  

 - 53. 553, 0. 000 19%  
[ - 58. 553]  Low 

Yield  Chopper  St or age 

 19%  
[ - 73. 951]  High 

 - 64. 108, 0. 000 19%  
[ - 69. 108]  High 

 - 48. 536, 0. 000 63%  
[ - 53. 536]  M edium  

 - 36. 130, 0. 000 19%  
[ - 41. 130]  Low 

Yield  Chopper  St or age 

 63%  
[ - 54. 122]  M edium  

 - 43. 889, 0. 000 19%  
[ - 48. 889]  High 

 - 33. 133, 0. 000 63%  
[ - 38. 133]  M edium  

 - 27. 532, 0. 000 19%  
[ - 32. 532]  Low 

Yield  Chopper  St or age 

 19%  
[ - 39. 087]  Low 

Q ualit y of  M at er ia l St olen Chopper  St or age 

 9%  
[ - 55. 009]  Yes  

 - 2 . 000, 0 . 000 91%  
[ - 7 . 000]  No 

Suc cess f u l Hull Div er s ion? 
[ - 11. 201]  Yes  -  Diver t  TRU in t o hu lls wit h r eplacem ent  

 18%  
[ - 5 . 000]  High 

 63%  

[ - 5 . 000]  M edium  

 19%  
[ - 5 . 000]  Low 

Yield  Chopper  St or age ( w/ o r ep lac em ent )  

 19%  

[ - 5 . 000]  High 

 18%  
[ - 5 . 000]  High 

 63%  
[ - 5 . 000]  M edium  

 19%  
[ - 5 . 000]  Low 

Yield  Chopper  St or age ( w/ o r ep lac em ent )  

 63%  
[ - 5 . 000]  M edium  

 18%  
[ - 5 . 000]  High 

 63%  
[ - 5 . 000]  M edium  

 19%  
[ - 5 . 000]  Low 

Yield  Chopper  St or age ( w/ o r ep lac em ent )  

 19%  
[ - 5 . 000]  Low 

Q ualit y of  M at er ia l St olen Chopper  St or age ( w/ o r eplacem ent )  

 9%  
[ - 5 . 000]  Yes  

 91%  
[ - 5 . 000]  No 

Suc cess f u l Hull Div er s ion? ( w/ o r ep lac em ent )  
[ - 5 . 000]  Yes  -  Diver t  TRU in t o hu lls w/ o r eplacem ent  

 - 89. 898, 0. 000 19%  
[ - 94. 898]  High 

 - 85. 566, 0. 000 63%  
[ - 90. 566]  M edium  

 - 80. 383, 0. 000 19%  
[ - 85. 383]  Low 

Yield  UREX Solut ion Ex t r ac t ion 

 19%  
[ - 90. 409]  High 

 - 80. 021, 0. 000 19%  
[ - 85. 021]  High 

 - 74. 123, 0. 000 63%  
[ - 79. 123]  M edium  

 - 67. 822, 0. 000 19%  
[ - 72. 822]  Low 

Yield  UREX Solut ion Ex t r ac t ion 

 63%  
[ - 79. 049]  M edium  

 - 67. 408, 0. 000 19%  
[ - 72. 408]  High 

 - 61. 021, 0. 000 63%  
[ - 66. 021]  M edium  

 - 54. 878, 0. 000 19%  
[ - 59. 878]  Low 

Yield  UREX Solut ion Ex t r ac t ion 

 19%  
[ - 66. 066]  Low 

Q ualit y of  M at er ia l St olen UREX Solu t ion Ext r act ion 

 9%  
[ - 78. 748]  Yes  

 - 2 . 000, 0 . 000 91%  
[ - 7 . 000]  No 

Suc cess f u l Solu t ion Ext r act ion Diver s ion? 
[ - 13. 457]  Yes  -  Diver t  f r om  UREX s olv ent  ex t r ac t ion 

 - 84. 744, 0. 000 19%  
[ - 89. 744]  Low 

 - 66. 594, 0. 000 63%  
[ - 71. 594]  Nom inal 

 - 48. 343, 0. 000 19%  
[ - 53. 343]  High 

Yield  CCD PEG  Solut ion Ex t r ac t ion 

 19%  
[ - 71. 575]  High 

 - 74. 870, 0. 000 19%  
[ - 79. 870]  Low 

 - 55. 398, 0. 000 63%  
[ - 60. 398]  Nom inal 

 - 41. 306, 0. 000 19%  
[ - 46. 306]  High 

Yield  CCD PEG  Solut ion Ex t r ac t ion 

 63%  
[ - 61. 393]  M edium  

 - 63. 510, 0. 000 19%  
[ - 68. 510]  Low 

 - 46. 141, 0. 000 63%  
[ - 51. 141]  Nom inal 

 - 37. 367, 0. 000 19%  
[ - 42. 367]  High 

Yield  CCD PEG  Solut ion Ex t r ac t ion 

 19%  
[ - 52. 731]  Low 

Q ualit y of  M at er ia l CCD PEG  St o len Solu t ion Ext r act ion 

 9%  
[ - 61. 674]  Yes  

 - 2 . 000, 0 . 000 91%  
[ - 7 . 000]  No 

Suc cess f u l Solu t ion Ext r act ion Diver s ion? 
[ - 11. 921]  Yes  -  Diver t  f r om  CCD/ PEG  

 - 79. 444, 0. 000 19%  
[ - 84. 444]  Low 

 - 58. 829, 0. 000 63%  
[ - 63. 829]  Nom inal 

 - 44. 586, 0. 000 19%  
[ - 49. 586]  High 

Yield  TRUEX Solu t ion Ext r act ion 

 19%  
[ - 65. 008]  High 

 - 79. 444, 0. 000 19%  
[ - 84. 444]  Low 

 - 58. 829, 0. 000 63%  
[ - 63. 829]  Nom inal 

 - 44. 586, 0. 000 19%  
[ - 49. 586]  High 

Yield  TRUEX Solu t ion Ext r act ion 

 63%  
[ - 65. 008]  M edium  

 - 79. 444, 0. 000 19%  
[ - 84. 444]  Low 

 - 58. 829, 0. 000 63%  
[ - 63. 829]  Nom inal 

 - 44. 586, 0. 000 19%  
[ - 49. 586]  High 

Yield  TRUEX Solu t ion Ext r act ion 

 19%  
[ - 65. 008]  Low 

Q ualit y of  M at er ia l TRUEX St olen Solut ion Ex t r ac t ion 

 9%  
[ - 65. 008]  Yes  

 - 2 . 000, 0 . 000 91%  
[ - 7 . 000]  No 

Suc cess f u l Solu t ion Ext r act ion Diver s ion? 
[ - 12. 221]  Yes  -  Diver t  f r om  TRUEX 

 - 88. 009, 0. 000 19%  
[ - 93. 009]  Low 

 - 75. 983, 0. 000 63%  
[ - 80. 983]  Nom inal 

 - 67. 675, 0. 000 19%  
[ - 72. 675]  High 

Yield  TALS PEAK Solu t ion Ext r act ion 

 19%  
[ - 81. 671]  High 

 - 88. 009, 0. 000 19%  
[ - 93. 009]  Low 

 - 75. 983, 0. 000 63%  
[ - 80. 983]  Nom inal 

 - 67. 675, 0. 000 19%  
[ - 72. 675]  High 

Yield  TALS PEAK Solu t ion Ext r act ion 

 63%  
[ - 81. 671]  M edium  

 - 88. 009, 0. 000 19%  
[ - 93. 009]  Low 

 - 75. 983, 0. 000 63%  
[ - 80. 983]  Nom inal 

 - 67. 675, 0. 000 19%  
[ - 72. 675]  High 

Yield  TALS PEAK Solu t ion Ext r act ion 

 19%  
[ - 81. 671]  Low 

Q ualit y of  M at er ia l TALS PEAK St olen Solu t ion Ex t r ac t ion 

 9%  
[ - 81. 671]  Yes  

 - 2 . 000, 0 . 000 91%  
[ - 7 . 000]  No 

Suc cess f u l Solu t ion Ext r act ion Diver s ion? 
[ - 13. 720]  Yes  -  Diver t  f r om  TALS- PEAK 

 - 89. 898, 0. 000 19%  
[ - 94. 898]  High 

 - 85. 566, 0. 000 63%  
[ - 90. 566]  M edium  

 - 80. 383, 0. 000 19%  
[ - 85. 383]  Low 

Yield  TRU Pu 

 19%  
[ - 90. 409]  High 

 - 80. 021, 0. 000 19%  
[ - 85. 021]  High 

 - 74. 123, 0. 000 63%  
[ - 79. 123]  M edium  

 - 67. 822, 0. 000 19%  
[ - 72. 822]  Low 

Yield  TRU Pu 

 63%  
[ - 79. 049]  M edium  

 - 67. 408, 0. 000 19%  
[ - 72. 408]  High 

 - 61. 021, 0. 000 63%  
[ - 66. 021]  M edium  

 - 54. 878, 0. 000 19%  
[ - 59. 878]  Low 

Yield  TRU Pu 

 19%  
[ - 66. 066]  Low 

Q ualit y of  M at er ia l St olen Solut ion Ext r ac t ion TRU Pu St or age 

 14%  
[ - 78. 748]  Yes  

 - 2 . 000, 0 . 000 86%  
[ - 7 . 000]  No 

Suc cess ul TRU div er s ion 
[ - 17. 045]  Yes  -  Diver t  TRU pr oduc t  f r om  st or age 

[ - 5 . 000]  No 

At t ac k TRU+Pu s t or age 
[ - 17. 045]  No 

At t ac k-  d iver t  s olu t ion f r om  ext r act ion 
[ - 17. 045]  No 

At t ac k Chopper / St or age? 
[ - 17. 045]  No 

At t ac k SNF St or age? 

 0. 000, - 1 . 000  
[ - 17. 045]  Yes  -  c am er as 

At t ac k SNF St or age? 

 0. 000, - 2 . 000  
[ - 19. 480]  Yes  -  d ir ect ional r ad iat ion det ec t or s  

At t ac k SNF St or age? 

 0. 000, - 3 . 000  
[ - 17. 610]  Yes  -  bot h 

At t ac k SNF St or age? 

 0. 000, 0. 000  
[ - 34. 699]  No 

Saf eguar d ( F)  -  C/ S 

 0. 000, - 4 . 000  
[ - 17. 045]  Yes  

Saf eguar d ( F)  -  C/ S 

 0. 000, 0. 000  
[ - 26. 525]  No 

Saf eguar d ( B)  -  I nvent or y Ver if ica t ion 

 0. 000, 0. 000  
[ - 17. 045]  No 

Saf eguar d ( A)  -  I t em  Count ing 
[ - 17. 045]   

Licensed by  Sy ncopation Sof tware f or educational and non-commercial research purposes only .



31 
 

3.4 PROBABILITY OF A SUCCESSFUL DIVERSION OR THEFT 

An attack is successful only if the attacker is undetected by all safeguards used by the defender. For example, if the 

attacker was undetected by the item counting safeguard but was caught by radiation detectors, then we assume 

the attack was a failure. We also treat the safeguards as independent of each other in the sense that the 

probability of passing one safeguard is independent of passing another. These assumptions can be combined to 

state that the probability of attack ‘a’ being successful is shown below where  is the probability that attack ‘a’ 

will be successful if the defender chooses strategy ‘d’.  is the probability of safeguard ‘s’ detecting attack ‘a.’ 

 

Furthermore, not all safeguards are useful in detecting all types of threats. In the attacker-defender matrix of 

Section 3.1, we saw that Safeguard A (item counting) detects only a subset of the attack scenarios (those indicated 

with an X in the attack column of Table 4). We consider the proposed safeguards in this model as improvements to 

existing security measures. Therefore, it is reasonable to assume that a safeguard not included in the defender’s 

strategy does not alter the probability of a successful attack. In this case, the contribution of the unselected 

safeguard to the probability of detection would be 0, so there would be no effect on the probability of a successful 

diversion. For example, assume there are two illustrative safeguards and safeguard 1 is implemented with 

detection probability 0.9, while safeguard 2 is not implemented. The probability of a successful diversion in this 

case is  

3.5 PROTRACTED THEFT 

A protracted theft by the attacker is one in which an attack comprises a series of repeated thefts from one target. 

This is done in order to steal small amounts of special nuclear material (SNM) that can be cumulatively used to 

build a weapon or other device. This type of attack scenario can be considered within our framework as illustrated 

with a simple hypothetical example with one defender safeguard and one attacker target. This is shown in Figure 

13 and discussed in the remainder of this section. As is the case with all probabilities and payoffs in this report, the 

values provided are notional and used only to illustrate the logic. They are not drawn from any government 

sources. 

 

Figure 13: Protracted theft decision tree 

In this example, the attacker is considering an attack by stealing special nuclear material (SNM) over one, two, or 

three stages, or not at all. To protect against such an attack, the defender can deploy a safeguard to detect SNM 

thefts. Safeguards that can detect thefts or diversions are material accountability systems which, among other 

things, can account for inventory levels and also detect changes in the mass, volume, and density of fluids (Ward 

2012). These accounting systems are subject to measurement error, and protracted thefts are aimed at stealing 
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quantities small enough to fall within the normal measurement error. For example, if a one-time theft lowered the 

mass of some SNM storage level but was still within the error tolerance, a review of the measurements would not 

necessarily indicate a theft. However, if a series of thefts occurred, the resulting sequence of low (but within error 

tolerance) measurements could be cause for alarm. Figure 14 provides an illustration of this idea. 

The dashed blue line in Figure 14 plots a hypothetical set of readings for an inventory verification system that 

measures the mass of some fictional SNM in storage. Readings below the low threshold or above the high 

threshold would be immediate cause for concern. As a result, any theft over multiple time periods or stages needs 

to be small enough as to stay within these bounds. The dashed blue line shows a sequence of measurement 

readings that should give no cause for concern to the defender because it appears to be random and unbiased.  

The dotted orange line in Figure 14 reveals a set of readings that are very low in sequence but still within the 

threshold. The randomness shown in the first plot does not fully disguise the steady decrease from time 3 to 6, and 

this trend, although within the threshold levels, should be an indication to the defender that there may have been 

a theft during that period. The conclusion here is that a sequence of decreasing readings within the threshold 

should make the defender more vigilant in monitoring the area to increase the chance of detecting a theft. 

In order to increase the likelihood of a damaging outcome to the defender, the attacker wants to steal as much 

material as possible. If the attacker is caught on any attempt, the attack is unsuccessful and results in a loss to the 

attacker. Therefore, the attacker wants to maximize the amount of SNM stolen but only if the complete attack 

(over one or more stages possibly) goes undetected by the defender. 

To illustrate this logic using notional probabilities, assume there is a 0.70 chance that a particular safeguard would 

detect a one-time theft of SNM. If successful, the theft was undetected, and given our previous discussion, the 

subsequent measurement will be within the error bounds and there is no reason for the defender to be alarmed. 

Therefore, the probability of detection for a second, repeated theft would remain unchanged at 0.70. However, 

after two thefts, the defender could notice decreasing (but allowable) measurement readings and would now have 

cause for concern. This would make the defender more cautious and his increased vigilance would cause the 

probability of detection to increase to a number larger than 0.70 for subsequent diversions. 
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Figure 14: Fictional inventory measurement readings for protracted theft case 

From the perspective of the attacker, the probability of being successful once is 0.3. To successfully steal SNM 

twice, the attacker must defeat the safeguard twice with a probability . To successfully steal SNM 

three times an upper bound on the probability of detection should be , or 2.7%.  This is an upper 

bound because, based on our reasoning above, the defender may become more cautious after two consecutive 

decreasing measurements. For this example, we choose the probability of detection for a protracted theft over 

three attempts to be 0.99 and therefore the probability of a successful attack is 1% (which is less than the 2.7% 

upper bound). We do not prescribe an exact formula here as a function of  thefts, as these probabilities might be 

individually assessed by subject matter experts familiar with protracted theft and the defender’s detection 

posturing following suspicious measurement readings from the safeguard. The DPL representation of the 

probability of detection, conditioned on the defender and attacker choices, is shown in Figure 15. 

When the attacker considers his strategy choices, we assume that the attacker factors in the potential yield of the 

stolen quantity when considering how many thefts to attempt. A single theft would result in smaller quantities 

stolen and would more likely be useful for a smaller weapon or device with less impact. In this fictional example, 

larger quantities stolen as a result of multiple thefts could be used in a more damaging IND. To account for this, 

the probability distribution of the stolen material value is conditional on the number of thefts as shown in Figure 

16.  
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Figure 15: Conditional Probability of Detection 

 

 

Figure 16: Protracted Theft Conditional Payoffs 

Another assumption is that there is significant advance planning by the attacker. Since the type of device built is 

contingent on the amount stolen, it is reasonable to believe that the attacker makes a strategic decision on the 

amount they hope to steal, since the resources needed to steal, hide, and weaponize special nuclear material 

(SNM) could vary depending on the quantity of material. It would not make sense for the attacker to plan for 

building a large-scale weapon from a very small amount of SNM. Similarly, it would not be sensible for the terrorist 

to plan on stealing a significant quantity of SNM over multiple attacks only to build a small-scale weapon. In other 
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words, the protracted theft decision is made with a cumulative goal in mind. Therefore, we model the attacker’s 

decision regarding the number of attacks as one initial decision of 0, 1, 2, or 3 attacks. We limit the number of 

thefts to 3 for this example, but a realistic example could include more if experts wish to model this.  

The DPL software representation of the optimal decision given the arbitrary and notional probability and payoff 

parameters is illustrated below. The defender’s objective is to minimize the expected payoff, as these positive 

payoffs are actually losses to the defender. The attacker aims to maximize the expected value. The game and 

notional payoffs are shown in Figure 17. 

 

Figure 17: Protracted Theft Policy Tree 

As shown in the lower half of Figure 17, if the defender does not implement inventory verification, an attacker 

theft over three attempts yields the highest expected value (164.994). If the defender does implement the 

inventory verification system, then the attacker chooses to steal over two attempts, and the expected payoff is 

much smaller now, only 14.643 (driven largely by the smaller probability of success with the safeguard present). 

The other expected payoffs are also comparatively smaller, ranging from 5 to 12.502. Facing expected payoffs of 

14.643 and 164.994, the defender chooses to implement the safeguard to minimize the risk faced by a protracted 

theft attack.  

The values come from the notional beta distributions as shown in  

Table 7. The Extended Pearson-Tukey distribution was used to discretize each distribution. For example, a 

successful protracted theft over 2 attempts results in discrete payoffs of 127.60, 107.49, and 85.48 with 

probabilities 0.185, 0.63, and 0.185, respectively. This results in an expected payoff of 107.141. However, the 

probability of a successful diversion, if the safeguard is implemented by the defender, is 1-0.91=0.09 from Figure 

15. Therefore, the expected payoff for a 2-phase diversion attempt is 9.643. Assuming that implementing the 

safeguard costs 18, the expected value to the defender is 27.643.  
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Table 7: Distributions for Protracted Theft Example 

Distribution alpha beta lower bound upper bound 

Protracted Theft (3 times) 15 5 60 200 

Protracted Theft (2 times) 8 6 50 150 

Protracted Theft (1 times) 3 15 10 100 

 

This hypothetical example illustrates how protracted theft can also be included in the decision tree as a single 

attack scenario with mutually exclusive options. The payoffs could also be adjusted to account for the correlation 

between Quality of Material Stolen and Yield payoffs as previously demonstrated. The structure used here was 

merely to illustrate the logic for this type of attack scenario. 
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4 CORRELATED UNCERTAINTIES 

4.1 BACKGROUND 

Modeling uncertainty is a crucial part of decision and risk analysis. In reality, multiple sources of uncertainty 

commonly exist, and they are likely to be correlated. D

 

When dealing with continuous uncertainties, it is common to discretize the probability density functions into 

discrete probability mass functions. This reduces the solution space, eases assessment, and can aid in the 

comprehension of the tree for the decision makers. For a recent review of the literature on the best discretization 

schemes see Hammond and Bickel (2012). In this report we rely on the extended Pearson-Tukey (EPT)

Figure 4  

-

 

-

 

 

  

The use of the copula C allows the separation of the marginal CDFs from the dependence structure, and the joint 

CDF  can be reconstructed from C, . Clemen and Riley (1999) used the multivariate normal 

copula to capture the dependence structure among random variables. For the two uncertainties case, a 

multivariate normal copula CN is given by    

- -
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4.2 PROCESS FOR CONTINUOUS UNCERTAINTIES 
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Figure 18: Notional Marginal Distributions of Uncertainties Q and Y 
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Figure 21 Figure 22 Figure 21 Figure 22

= 1.64 Figure 21 Figure 22  

-
- -

Figure 22 Figure 23

 

Figure 23

 and Y and their desired correlation.  For details on how to expand the four-step approach to an arbitrary 

number of marginal distributions and their association structure, see Wang and Dyer (2012). 

 

 

Figure 19: Bivarate Standard Normal 
Tree 

 

Figure 20: Bivarate Standard Normal 
Tree r=0.5 

 

Figure 21: CDF of Binary Standard 
Normal Tree r=0.5 
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Figure 22: CDF of Binary Standard Normal Tree r=0.5 

 

Figure 23: Event Tree for Marginals of Q and Y r=0.5 
  

4.3 PROCESS FOR BINARY UNCERTAINTIES 

Figure 24

 

- –      

– - –      

 

In the lower panel of Figure 24 we show an example of the use of equations (3) and (4) to generate an 

uncorrelated event tree (r = 0) and a correlated event tree when r = 0.5.  The probability of successful yield is 

highest for correlated distributions and high quality material (0.515); which is higher than for uncorrelated 

distributions and high or low quality material (0.25); which in turn is higher than for correlated distributions and 

low quality material (0.073).  
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Figure 24: Discrete Marginal Distributions for Q and Y and Correlated Trees 

Figure 25

Figure 25

-

 

It is difficult to derive closed form solutions for more than two correlated binomial uncertainties.  However, 

 dimensional standard normal vector Z ~ N(Z1, Z1, … Zn) with 

correlation matrix 

– then set Xi = 1 if Zi ≤ z(pi), Xi = 0 otherwise, where z(pi) is the pi
th

 percentile of the standard 

normal distribution.  Simulated data can be used to empirically calculate all of the desired conditional probabilities, 

e.g. Pr(Xi = 1 | Xj = 1, Xk = 0).  For details on the process required to determine the target correlation matrix for Z, 
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see Emrich and Piedmonte (1991). 
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Figure 25: Example of a correlated “decision” uncertainty 
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Figure 26: Empirical Estimate of Correlations for Three Uncertainties Based on 100,000 Simulated Triplets (joint 

probability of each path in bold) 
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5 MATHEMATICAL PROGRAMMING MODEL 
The decision tree formulation has some nice features such as an intuitive structure and solution, and the ability to 

view suboptimal solutions if desired, and it clearly shows the sequential nature of the problem we investigate. 

However, there are several drawbacks that we highlight in this section. We then present an alternative solution, a 

mixed integer program (MIP), where binary variables are used to represent the safeguard and attack strategies of 

the defender and attacker, respectively.  

5.1 DECISION TREE DRAWBACKS 

Decision trees expand rapidly in terms of decision nodes and uncertainties, and the number of endpoints to be 

calculated grows quickly. For example, in the simple motivating example provided in Section 1 of this report, with 

two defender decisions, one attacker decision, and three uncertainties, 44 endpoints are calculated in the DPL 

software. That number grows to 1,296 in the larger model presented in Section 2, and that does not include the 

full set of defender-attacker strategies listed in Section 2.1. 

In addition to becoming a computational burden, large decision trees are also difficult from the perspective of 

obtaining model parameters and graphically communicating the optimal policy to decision makers. It can be very 

time consuming to assess the conditional probabilities necessary to fill the decision tree. However, with the 

correlated decision tree methods used here, we only need to assess the marginal distributions and the 

correlations. This provides an improved method of assessing key parameters but does not resolve the other issues 

mentioned. 

Commercial decision tree packages are limited in the size of the tree they can solve and generally do not exploit 

parallel computer architectures. On the other hand, a MIP formulation could potentially be solved on parallel 

computer architectures. 

5.2 MATHEMATICAL PROGRAMMING CONSIDERATIONS 

Integer programming problems are usually solved using cutting planes and variations of branch-and-bound 

methods. For  binary variables, the solution method could need to consider combinations. That number 

increases when the binary variables are changed from {0, 1} binary variables to integer-valued variables {0, 1, 2, …}. 

The highly constrained nature of our problem limits the dimensionality for the optimization problem since the 

constraints will eliminate many of the combinations that need to be considered.  

For simplicity, if each safeguard is modeled as two binary decision variables  and , only one of these 

variables can be equal to one, e.g.  +  = 1. The safeguard is either implemented, in which case 

 or it is not implemented, in which case . It is not possible that both variables equal 

one or zero at the same time. These ideas are further discussed in a later section. 

As we mentioned, another advantage to a mathematical programming formulation is that it is relatively easier to 

take advantage of parallel computing resources compared to a decision tree representation. For these reasons, we 

use the optimization framework described in this section that can be solved in standard optimization software 

using the CPLEX solver. Code for the optimization software, GAMS, can be found in the appendix. 
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5.2.1 OBJECTIVE FUNCTION FORMULATION 
At the time of an attacker’s decision, the defender has already made his choice(s) of safeguards to implement. 

Given the observed set of defender choices, the attacker can calculate the expected value of each of his 

alternatives (which target to attack, if any). If we consider the consequences as positive values (to the defender) 

then the attacker seeks to maximize the expected value of the outcomes whereas the defender wishes to 

minimize. We discuss this in more detail when we present the problem, but take a minute to discuss a related 

strand of literature, sequential optimization problems. 

The sequential nature of a decision tree makes it easy to implement the two objective functions at the appropriate 

nodes: the defender seeks to minimize the expected payoffs going forward, and the attacker seeks to maximize at 

subsequent nodes. 

Implementing two conflicting objective functions is not as straightforward in a MIP formulation. The problem 

appears on its face to suffer from the need to sequentially solve separate optimization problems. For instance, the 

defender makes a choice about the portfolio of safeguards to implement, and then the attacker makes his decision 

about an attack strategy given the defender’s decision. However, the defender must make his initial choice given 

his beliefs about the attacker’s subsequent strategy. In order to obtain a solution for defender and attacker, the 

defender’s optimization problem must be solved with the attacker’s optimization problem as constraints. This 

formulation is known as an integer bilevel linear program (IBLP).  

Moore and Bard (1990) discuss the challenges in solving the class of IBLP programs, which require specialized 

branch-and-bound methods and can be computationally challenging to solve. The concerns in Moore and Bard 

(1990) and other related work from Bard (1998) and DeNegre and Ralphs (2008) arise from the fact that there are 

two decision makers with non-aligned objectives and two sets of decision variables. The formulation used in our 

approach treats each joint strategy as one variable rather than two separate dependent variables, which helps 

avoid some of these concerns. 

5.3 TREE FORMULATION 

The MIP formulation of the decision tree follows the work of Paruchuri, et al. (2008). To illustrate the logic, 

consider a small example with two decision makers, each with one choice as shown in Figure 27. Again we consider 

a sequential problem where the defender makes a choice and the attacker, given the defender’s choice, makes his 

decision thereafter. In this example, the payoffs are the same for each player and are represented by the values in 

brackets. If the defender and attacker both choose ‘yes’ then the payoff is 20 to each of them. If the defender 

chooses ‘yes’ and the attacker chooses ‘no’ then the payoff is 10 to each player. The defender’s objective is to 

minimize his payoff and the attacker aims to maximize his payoff. 
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Figure 27: Defender Strategy 

If the minimizing defender chooses yes, then the maximizing attacker will choose yes because 20 > 10. If the 

defender chooses no, then the attacker will choose yes because 100 > 10. The minimizing defender, knowing the 

attacker’s best response to his strategy, will choose yes since 20 < 100. In the next subsection, we discuss the 

structure of an optimization problem that is equivalent to this decision tree.  

5.4 SETS AND PARAMETERS 

Following the general structure of Paruchuri et al. (2008), we have the following parameters and variables in the 

optimization problem. 

Table 8: MIP Parameter Descriptions 

Set Description 

 Set of defender strategies, indexed by  

 Set of attacker strategies, indexed by  

 = 1 defender chooses strategy d; = 0 otherwise 

 = 1 if attacker chooses strategy a; = 0 otherwise 

 = 1 if defender chooses strategy AND attacker chooses strategy a; = 0 otherwise 

 Matrix of defender payoffs 

 Matrix of attacker payoffs 

 Decision variable used to bound payoffs in the constraints 

 “Big-M” parameter 

 

Applying the notation in Table 8 to the simple game tree in Figure 27, and are the 

defender’s and attacker’s action sets, respectively. So we have  and for the set of indices of 

strategies for each player. 

If the defender chooses yes , then the attacker’s best response is to choose yes  since 20 > 10. If 

the defender chooses no , then the attacker’s best response is yes  since 100 > 10. The payoffs in 

our decision tree are the same as in the optimization problem. The defender’s objective is to minimize the payoff 

and the attacker’s objective is to maximize the payoff. The payoff matrix is as follows, where each cell 

contains the payoffs . 

  

[20.000]  Yes  

  

[10.000]  No  

Attacker Decision  

[20.000]  Yes  

  

[100.000]  Yes  

  

[10.000]  No  

Attacker Decision  

[100.000]  No  

Defender Decision  

[20.000]    
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 A1=yes A2=no 

D1=yes (20,20) (10,10) 

D2=no (100,100) (10,10) 

 

5.5 MATHEMATICAL FORMULATION 

The defender solves the following problem, which is a mixed-integer quadratic program (MIQP). Paruchuri, et al. 

(2008) showed that their formulation could be reconfigured as a MILP, which we adapt to a MIP as shown later.  

 

 

 

 

 

 

 

The expression in the objective function is equal to one when the defender chooses strategy  and the 

attacker chooses strategy .  This introduces a nonlinearity that results in a mixed-integer quadratic program 

(MIQP). We can introduce a change of variable to reformulate the problem as a MIP by considering a binary 

variable, which takes on the value 1 if strategy is chosen by the defender and strategy is chosen by the 

attacker; otherwise the yda = 0. In this new formulation, the defender’s decision isn’t explicitly modeled as a choice 

variable, but the attacker’s choice,  is and the objective function and several constraints are summed over the 

full set of the defender’s strategies, . The joint decision of choosing and determines the defender’s 

choice. 

 

 

     

dummy’s × payoffs to defender 
 

s.t. 
Dd Aa

day 1 
only one dummy = 1 -> only one 
path 
 

  
if a = 1 then then defender path 

must include a;  if a = 0 then path 
could or could not include a 

  attacker must choose exactly one 
action 

  ≥  Attacker Payoff given for 

actions a and d
1 

                                                                 
1
 Note that  is used in place of  here as a change of variable since there is an equation for each . 
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  If attacker plays then is the 
attacker payoff for action a 

 
 

 
 

Domain constraints 

 

5.5.1 OBJECTIVE FUNCTION 
If , then the joint strategy is chosen, the defender chooses strategy  and the attacker chooses 

strategy . In that case, the defender will realize the payoff  from his payoff matrix . If another strategy is 

chosen then does not contribute to the objective function. To relate this to the decision tree formulation, the 

choice of is equivalent to a path on the tree that represents a unique selection of defender and attacker 

strategies. Each path is represented by one variable. 

5.5.2 CONSTRAINTS 
The set of constraints serve to guarantee that the attacker’s choice, given the defender’s decision, is optimal for 

the attacker. Knowing this sequence of events, the defender’s decision is maximized by considering what the 

optimal attacker choice is following the defender’s action.  

5.5.2.1 ONE JOINT STRATEGY 

Since the attacker and defender are each choosing a single strategy, it naturally follows that only one joint strategy 

can result. Therefore, only one of the yda variables can be equal to one; the rest must be equal to zero. Relating 

this to the tree again, it is equivalent to enforcing that one and only one path through the tree is chosen. 

 

In our small example, this constraint can be explicitly written as: 

 

5.5.2.2 ATTACKER AND JOINT STRATEGIES 

If the attacker chooses a particular strategy then it must be the case that for some defender choice there is 

. This constraint binds the attacker and defender choices in the  variable. This constraint applies 

to each attack option ‘a’.  

 

To illustrate using the simple example again, the constraints would become: 

 

 

If the attacker chooses strategy 1, then the constraints appear as follows: 
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Clearly, the first constraint implies that or  must be 1 and the possible set of optional strategy pairs has 

been reduced to two. That must be the case given how the variable has been defined.  

5.5.2.3 ATTACKER OPTIMALITY 

The defender makes his choice knowing what the attacker will do following his decision. Since the attacker has a 

different objective from the defender, this problem must be embedded in the constraints of the program. The 

attacker will choose the outcome that is optimal, given the defender’s decision. Using a choice variable,  to 

represent the attacker’s payoff, we have the following set of constraints for each potential attacker decision . 

The right-hand side of the constraint uses the big-M method to selectively enforce an upper bound in the 

inequality. 

 

This constraint is easy to explain using our simple example. With the set of attacker decisions being {yes=1, no= 2} 

there are two constraints to consider: 

 

 

Let us consider the case where , which implies . Since M is sufficiently large, it imposes no forceful 

upper bound on the right-hand side of the first constraint where the RHS . It is essentially an 

inactive constraint as the upper bound is too large to restrict any action. In the second constraint, the RHS of the 

inequality is restricted to  which, together with the LHS implies equality.  Therefore, we have 

 

Since the attacker strategy is no , if the defender chooses yes, then and if the 

defender chooses no, then . We know that since the only joint strategy that can 

be 1 is of the form . Since they are binary variables, represents the attacker’s payoff if the combined 

strategy is so we see that  is actually the attacker’s payoff for the choice of . Similarly, if the attacker 

chose yes, then  or depending on the defender’s choice. 

5.5.2.4 DOMAIN CONSTRAINTS 

The last set of constraints enforces the restriction that each  and  is binary and declares that  is a free 

variable. It is straightforward to see how these constraints can be used in the small example. 

 

 

 

5.6 RESULTS  

5.6.1 DECISION TREE FORMULATION 
The optimal policy in the decision tree is the defender chooses yes and the attacker chooses yes for a payoff of 20 

to the defender. As we discussed before, the defender can choose yes (strategy 1) with an expected payoff of 20 

based on the attacker’s optimal response or the defender can choose no (strategy 2) and earn a payoff of 100. The 

tree in Figure 28 clearly shows the optimal choice as the highlighted path. 
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Figure 28: Policy Tree for MIP Example 

 

5.6.2 OPTIMIZATION 
Table 9 shows that the variable  which indicates that the optimal joint strategy is for the defender to 

choose yes and the attacker to choose yes. This is supported by the fact that . Notice that = 20; this is the 

payoff earned by the attacker under this scenario. 

Table 9: MIP results for small example 

y11 y12 y21 y22 1 2  

1 0 0 0 1 0 20 

 

5.6.3 MOTIVATING EXAMPLE 
We can follow the same logic and structure just presented to solve the motivating example provided in Section 1 

of this report.  For convenience, we show Figure 5 again below as Figure 29. What we will look for in the 

optimization results are decision variables that represent the defender choice (Yes, No), the attacker choice (Yes), 

and the defender’s expected loss of 23.335. 

 

Figure 29: Motivating Example - Policy Tree 

  

[20.000]  Yes  

  

[10.000]  No  

Attacker Decision  

[20.000]  Yes  

  

[100.000]  Yes  

  

[10.000]  No  

Attacker Decision  

[100.000]  No  

Defender Decision  

[20.000]    

Attack? (T)  

 -18.000    

[-30.000]  Yes  

Successful attack?  
[-23.335]  Yes  

[-10.000]  No  

Attack? (T)  

 0.000    

[-23.335]  No  

Implement Inventory Verification? (DEF)  

 -10.000    

[-23.335]  Yes  

Implement Inventory Verification? (DEF)  

 0.000    

[-28.001]  No  

Implement 

Containment and 

Surveillance? (DEF)  
[-23.335]    
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There are four defender strategies,  and again just two attacker strategies,  

where Y and N are used to abbreviate the choices yes and no.  Figure 29 does not show the D = NY and NN choices, 

for compactness. 

We solved the simple problem formulation earlier using the Microsoft Excel solver because of the relatively small 

nature of the problem. In this example, we have far more endpoints and so solving in Excel would be tedious. 

Using the algebraic modeling language GAMS (www.gams.com) makes it easier to model these larger problems. 

We still use Microsoft Excel, however, to provide initialization values in DPL and also to link this information to 

GAMS. Entering parameters in a spreadsheet is easier than modifying the parameters directly in DPL, and the same 

applies to modifying the GAMS code.  

The formulation is similar to the simple example in terms of variable definitions. The mathematical formulation is 

the same, but there will be more equations when not written in the compact algebraic form. 

The full set of constraints for the motivating example is shown below and helps to illustrate the use of an algebraic 

modeling system and a specialized large-scale MIP solver.  

 

 

 

 

 

 

 

 

 

 

The problem solved in 0.014 seconds according to the GAMS output, using a Lenovo ThinkPad X230 laptop with an 

Intel Core i7-3520M processor @2.9 GHz.  The results are provided in Table 10. 

Table 10: Optimization results small model 

Variable Objective        

Value 23.335 1 0 13.335     

Variable         

Value 0 0 1 0 0 0 0 0 

 

The results here match the results from the decision tree. The optimal strategy is for the defender to choose 

strategy 2 {YN} and for the attacker to choose strategy 1 {Y}. This results in an expected payoff to the defender of 

16.669 as we found in the decision tree formulation using DPL (Figure 29). The attacker’s payoff is captured in the 

decision variable . In the previous example, we had a symmetric payoff structure. The difference here is that the 

defender incurs a cost to use a yes strategy. The first safeguard costs 10 units and the second safeguard costs 18 

units. These costs are shown in the decision tree in Figure 29 below the branch extending from each decision node. 
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For example, if the defender chooses yes in the first decision, you see a cost of 10 shown underneath the ‘yes’ 

branch and a cost of 0 below the ‘no’ branch. 

5.7 LARGE SCALE RUNS 

To assess the computational burden of the mathematical programming formulation, the problem was scaled to 

consider a larger number of defender strategies and attack scenarios than previously used in the decision tree 

formulations. Notional values were used to simulate payoffs for various attack scenarios. 

5.7.1 PRE-PROCESSING 
In this section, we give an overview of the pre-processing performed for the runs in order to show how we ran the 

larger problems. 

5.7.1.1 STRATEGIES 

A vector of safeguard decisions (1=yes, 0=no) was generated to represent the sequence of decisions by the 

defender regarding which safeguards to implement. For example, with three safeguards, the strategies are 

represented as follows in Table 11.  

Table 11: Strategy Vectors 

Strategy  Safeguard 1 Safeguard 2 Safeguard 3 Vector 

1 No No No 000 

2 No No Yes 001 

3 No Yes No 010 

4 No Yes Yes 011 

5 Yes No No 100 

6 Yes No Yes 101 

7 Yes Yes No 110 

8 Yes Yes Yes 111 

 

Clearly, these vectors get quite large when there are more safeguards considered. Generally speaking, each vector 

for strategy  could be considered as  where there is one element for each safeguard. These 

variables are used in a pre-processing program that generates the probability parameters and strategy costs for 

the GAMS model. 

5.7.1.2 UNCERTAINTIES 

The matrix  contains probability assessments for the probability of safeguard s detecting attack a. As usual, 

these are completely notional and were arbitrarily assigned to generic safeguards and attack scenarios. These 

values were used in combination with the strategy vectors to generate , the probability of a successful 

diversion with the joint strategy .  Table 11 shows the matrix for 8 potential safeguards (rows, the first 3 of 

which correspond to the three safeguards in Table 10) and 10 potential attack scenarios (columns). 

Table 12: Sample  matrix 

0.9 0.8 0 0.9 0.8 0 0.9 0.8 0 0.9 

0.8 0 0 0.9 0 0 0.9 0 0 0.9 

0.7 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 

0.9 0.8 0 0.9 0.8 0 0.9 0.8 0 0.9 

0.8 0 0 0.9 0 0 0.9 0 0 0.9 
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0.7 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 

0.7 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 

0.9 0.8 0 0.9 0.8 0 0.9 0.8 0 0.9 

 

To calculate  we use the formula from earlier, , but with a slight modification. Previously, 

we mentioned that when the safeguard is not deployed and is otherwise in the set [0, 1] depending on the 

assessment. To calculate this algorithmically, we used  with  when safeguard s is 

used in strategy  and equals zero otherwise.  This results in a matrix such as the one shown in  

Table 13, in which the columns represent the 10 potential attack scenarios and the rows represent the three 

safeguards (8 strategies) considered by the defender. Note the top row is all ones as this is the strategy in which no 

safeguards are used at all (so all attacks are successful). 

Table 13: Sample  matrix 

1 1 1 1 1 1 1 1 1 1 

0.3 0.4 0.3 0.2 0.4 0.3 0.2 0.4 0.3 0.2 

0.2 1 1 0.1 1 1 0.1 1 1 0.1 

0.06 0.4 0.3 0.02 0.4 0.3 0.02 0.4 0.3 0.02 

0.1 0.2 1 0.1 0.2 1 0.1 0.2 1 0.1 

0.03 0.08 0.3 0.02 0.08 0.3 0.02 0.08 0.3 0.02 

0.02 0.2 1 0.01 0.2 1 0.01 0.2 1 0.01 

0.006 0.08 0.3 0.002 0.08 0.3 0.002 0.08 0.3 0.002 

 

5.7.1.3 COSTS 

Using the same vector information, the strategy costs are generated in the program. Starting with a cost of 0, the 

strategy cost is iteratively calculated as follows, where  is the cost of strategy d,  is the cost of safeguard , and 

 is the binary variable representing whether or not safeguard s is included in strategy d. 

 

The number of strategies grows rapidly with an increase in the number of safeguards included, with a total of  

strategies, where  is the number of safeguards. 

5.7.2 RESULTS 
The number of equations used in the GAMS commercial optimization software represents both constraints and 

calculated equations. Constraints are the same as appear in the model formulation and take the form

. The calculated equations are expressions such as the objective function. The number of 

equations is linear in the number of attack strategies,  considered for the model. There are four constraints that 

are evaluated “for all a” in addition to the objective function and the constraints restricting the attacker to one 

choice and only one joint strategy. Therefore, the number of equations grows as  using big-O notation. 
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The number of variables is a function of both the number of safeguards (and therefore strategies) and the number 

of attack scenarios. The number of joint strategy variables is the dominating factor in the growth of the 

number of variables, while the rest of the growth is linear in a, resulting in a growth rate of . 

Non-zero elements are members of the matrices of payoffs, coefficients, costs and other parameters used in the 

model. As the number of strategies and attack scenarios grow, so will the number of non-zero elements.  

Run-time is the amount of time it takes GAMS to initiate the run by reading in data files, performing pre-processing 

steps, and the time it takes CPLEX to solve the problem and report the answer. It does not include pre-processing 

time to create the parameters for the run. A separate program was written to provide input data for the runs. This 

information includes , the probability of a successful attack when joint strategy (d, a) is chosen by the defender 

and attacker. It also includes the cost of each strategy, which is determined by cost assessments for each 

safeguard and the number of safeguards included in the strategies.  This program uses other assessments to 

calculate these parameters. 

The runs were performed using a Lenovo ThinkPad X230 with a Core i7-3520 M processor, 2.9 GHz Intel Processor, 

180 GB SSD, 4MB RAM, and a 64-bit Windows 7 operating system. GAMS build 23.9.5 was used and has a full 

license including CPLEX. The results are shown in Figure 30. Attack options refers to the number of thefts or 

diversions considered by the attacker. The number of safeguards considered appears on the horizontal axis. The 

number of defender strategies could be obtained from this by calculating . 

 

Figure 30: Computational results of MIP for various defender and attacker strategies 

For an equal number of attack scenarios with the same payoffs and the same probability assessments, the 

objective function value improves (non-increasing for the defender) as more safeguards are considered. This 

makes sense because, as new safeguards are considered, all of the previous options are still available. For example, 
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if there are 4 safeguards considered in run 2 and we add 6 more safeguards in run 3, we still could choose the 

optimal strategy (using just those four safeguards) and choose not to use any of the new 6 safeguards. This should 

result in the same objective function. Therefore, it should be non-increasing in the number of safeguards, provided 

the same set of attack scenarios (and associated parameter values) is used. 

This computational exercise was to test the algorithm using a personal computer. Parallel processing and 

supercomputing would enable the solution of larger problems in reasonable times.  In addition, real world 

applications are likely to have more than 15 possible attacks and 20 possible safeguard options.  Modeling 

techniques such as prioritization of strategies to include only the most effective, or aggregating them into classes 

of strategies, could be used to address the computational challenge of large-scale analysis.  

Finally, the computational burden could be reduced by the inclusion of a budget constraint. A sufficiently tight 

budget constraint could restrict the use of many safeguard combinations (i.e. strategies). This could be 

accomplished as a single constraint in the mathematical programming formulation where  is the budget level. 

 

It could also be done in pre-processing when the parameters are generated, by eliminating a strategy from 

consideration once the strategy cost exceeds the budget threshold. This might actually be computationally more 

efficient. At that point, adding more safeguards is not really useful. It may be practical to consider only strategies 

with a relatively small number of safeguards. This could dramatically reduce the computational burden. 
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6 FURTHER WORK 
In this section we present some opportunities for further exploration relating to methodology, extensions, and 

computational feasibility.  

6.1 MULTIPLE FACILITIES AND PERIODS 

The results presented in this report demonstrate our methodology on one facility, but this could be extended to 

allocate resources across multiple facilities through a budget constraint tied across the facilities. To allocate 

resources across multiple facilities, the constraint would take the form below, where  is the set of facilities.  

 

Exploring multi-stage problems where the budget could be allocated over multiple periods would also be an 

interesting extension. An example could be a new safeguard technology that takes one period to develop to 

operational capability, requiring an investment in the previous period to deploy. In period 1, the defender could 

make an R&D investment, with the safeguard implemented in the second period. As a second option, the defender 

could spend the resources on a different immediately available safeguard in the first period. A third option could 

be for the defender to save the funds for the second period and wait to see if the attacker has exploited a 

vulnerability in the first period, and then target the investment in the second period to mitigate the exposed risk. 

The integral of risk over time could also be used as a metric for guiding R&D investments.  

6.2 STRATEGIES 

We assumed in this model that the list of attacker strategies would be exhaustive, based on the facility’s design 

basis threat (DBT). However, it would be worth studying, particularly in the context of a multi-period game, how to 

incorporate an unanticipated attack strategy. This might be especially relevant in the context of the insider threat, 

because the malicious insider may be able to identify vulnerabilities not generally known to the facility’s security 

personnel. A potential approach could tie into the previously mentioned idea of considering perceived 

probabilities. The attacker may have a lower probability of detection assessment in some areas due to a perceived 

vulnerability. 

6.3 ALTERNATIVE SOLUTION APPROACHES 

Depending on the actual probability assessments for the safeguards, it could be the case that the probability of a 

successful diversion becomes very small with the introduction of just a few safeguards. Consider, as an example, 

four safeguards with a probability of detection of 0.8 each for some particular attack strategy. The probability of a 

successful diversion would be . If this were the case, then it might not be necessary to 

consider more safeguards if the attacker wouldn’t attack with such a low probability of success. Therefore, it may 

be worth considering only strategies for which the probability of successful diversion is above some threshold. 

Considering a directed graph or network representation could also be worth exploring to see if it yields faster 

solution times. The defender would deploy safeguards at edges on the graph that impose a cost to the attacker, 

and the attacker would seek the lowest-cost path through the network.  
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6.4 COMPUTATIONAL EFFORTS 

One of the most important and immediate extensions of this work should be to parallelize the algorithms to be run 

on supercomputers and other advanced computing resources available to the DOE national laboratories. Not only 

will this allow for larger models to be run, but it can also identify the largest models that can be reasonably solved 

in a supercomputing environment. 

Additional research on reducing the computational burden due to the large number of strategies is worthwhile. 

The mixed integer programming formulation may have a specialized structure that could allow for faster solution 

times than the branch and cut methods used by the CPLEX solver. Focused research on integer programming 

techniques may yield opportunities to reduce solution times for larger problems. 

Despite the advanced computing resources available to the DOE national laboratories, it would be worth 

examining solutions to problems that are arbitrarily larger than supercomputers could solve to optimality. A 

sampling strategy that repeatedly solves “relaxed” MIPs using randomly sampled safeguards from the full 

safeguard set could potentially yield reasonable approximations to the unrelaxed problem. There could be insights 

gleaned on the safeguards that frequently appear in the optimal solutions. Furthermore, learning algorithms could 

identify safeguards that tend to appear together. For example, we could find that three particular safeguards 

appear in more than 90% of the optimal relaxed solutions. As a further example, we could find that item counting 

appears in nearly all cases in which containment and surveillance appears, and we could also see that item 

counting rarely appears in solutions along with inventory verification. Constraint sampling has been proposed to 

solve some difficult dynamic programming problems, and there may be some analogous methods to be applied 

here. 

6.5 PARAMETER ASSESSMENTS 

Another interesting aspect that could be explored further is the probability of a successful diversion. We assumed 

knowledge of these probabilities for both the defender and attacker, which is reasonable given that a malicious 

insider adversary would be likely to have some understanding of the safeguards. However, it would be interesting 

to capture “perceived probabilities.” The attacker may have some notion of the likelihood of defeating a 

safeguard, but that estimate might be different from the estimates the defender has. In reference to the previous 

recommendation of examining multi-period games, this could also provide an opportunity for both players to 

refine their probability assessments given the attack option executed in the first period (including whether or not it 

was successful). 

The uncertainties regarding a successful diversion were expressed in terms of the quality of material stolen and the 

yield from such a theft. However, these could be easily modified to express further uncertainties. For example, 

there may be uncertainty over the attacker’s capabilities to generate a weapon, the particular adversary group 

that is responsible, potential recovery of the material, and other uncertainties deemed important by DOE. This is a 

case where the correlated uncertainties introduced in this report would be advantageous. Rather than eliciting 

many conditional probabilities, these additional uncertainties need to be expressed only in terms of their marginal 

distributions and pairwise correlations. 

In order to make a model such as the one presented in this report operational, considerable time will need to be 

given by subject matter experts to assess the probabilities and other parameters needed for the model. 

Specifically, we would need to elicit probability distributions of the quality of the material stolen for each target to 

be considered as well as the associated yield from any weapon developed using that material. With the use of 

copulas, we can dramatically reduce the number of assessments needed. Instead of assessing the quality 
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distribution and then a conditional assessment based on each quality outcome, we can instead elicit the marginal 

distributions and pairwise correlations. Nonetheless, it might be worth doing a formal comparison of these two 

alternative elicitation techniques to document the advantages and disadvantages of each in the actual SME 

elicitation environment. 

Finally, we have used a nominal UREX+ facility here with safeguards and attack scenarios developed using open-

source materials. Subject matter experts including security professionals, scientists, and others would need to 

determine the actual safeguards available, identify possible targets, and assess the potential vulnerabilities, 

threats, and consequences associated with those targets. Mixed Oxide (MOX) fuel fabrication facilities (MFFF) have 

been under construction to deal with large quantities of weapons-usable highly enriched uranium and plutonium 

following the end of the Cold War (NRC 2005). These excess materials will be converted into fuel for nuclear 

reactors. New facilities and configurations could result in enhanced security but also new vulnerabilities. A next 

step could be to analyze an actual facility such as a MFFF and elicit the previously mentioned parameters. This 

could require access to non-open source information, however. 
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7 CONCLUSIONS 
In this model setup, we were able to solve a Stackelberg game using a decision tree and an equivalent MIP 

formulation. The advantage of the MIP formulation is that while a decision tree is a logical, intuitive way to 

represent a decision problem, the reformulation as a mixed integer program provides a way to solve a much larger 

problem with substantially more strategies for both the defender and attacker. The MIP formulation also provides 

a way to parallelize the solution if the number of variables becomes too large.  

We also considered that the uncertainties resulting from the quality of material stolen and the yield payoff from 

such diversions could be correlated. This enables subject matter experts to make initial assessments on the 

potential yields and qualities of various special nuclear materials (SNM) and then assess the correlations. This is 

much less burdensome than the number of conditional probability assessments that would have to be made 

otherwise. As technologies and capabilities improve, the decision maker can reassess the initial distributions 

without the cumbersome task of updating all of the conditional probabilities. 

Given probability and cost assessments from subject matter experts, policy makers can use this model to inform 

the decision-making process on which safeguards can be implemented to best mitigate the terrorist threat to the 

commercial nuclear fuel cycle. There are a number of safeguard options that can be deployed, either as new 

technologies or systems, or as add-ons to additional safeguard measures. With appropriate assessments, this 

model formulation provides guidance on the optimal strategies for various sets of safeguards and shows how the 

risk and payoff changes as a result. 
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9 APPENDICES 

9.1 APPENDIX A:  DESCRIPTIONS OF DEFENDER STRATEGIES AT A REPROCESSING PLANT 

(WARD, 2012) 

A. Item Counting 

Item counting should identify the absence of discrete items, such as spent fuel rods or solid TRU product ingots. 

B. Inventory Verification 

Inventory verification takes place twelve times a year: eleven monthly, interim verifications (IIV) and one annual, 

physical inventory verification (PIV). During the PIV, the plant is shut down and flushed out to account for as much 

material in process hold-up as possible.  During this time, any material that has been diverted should be identified 

as missing; however, it is possible at large facilities for diverted material to be hidden in MUF (material 

unaccounted for), which is the material that falls within standard measurement errors.  Thus inventory verification 

has the potential to measure any diversion scenario, although the actual detection probability will depend on the 

amount of material stolen and the error associated with measurements. Inventory verification will not detect 

falsified spent fuel declarations.  

C. Design information verification 

During design information verification, inspectors ensure that physical features of the facility are consistent with 

declared design specifications.  The 3-Dimensional Laser Range Finder Detector is used to help inspectors find 

anomalous plant features or features that have changed since the last inspection.  This safeguard should be able to 

detect the attachment of any pipes or valves used to divert material from a process vessel.  

D. Non Destructive Assay, NDA (Gross neutron counting; Pu/Cm-242 ratio counting) 

Standard non-destructive assay techniques are used to verify shipper declarations of spent fuel composition, as 

well as to monitor material and approximate TRU content.  In this case, it is assumed that traditional NDA 

techniques are applied to tanks once the tanks have reached a certain volume. The implication of this assumption 

is that NDA techniques will not detect the diversion of material, but they will detect diversion with replacement, 

because the resultant solution that is being measured will be diluted by replacement material (e.g. HNO3). 

E. Destructive Analysis, DA 

Destructive analysis is used to determine the isotopic composition of a solution. As such, DA can detect diversion 

of material and replacement with another material. DA may also be able to detect false declarations of spent fuel 

composition.  

F. Containment and Surveillance, C/S (cameras and directional radiation detectors) 

Containment and surveillance is installed around the facility to ensure the proper, undisturbed flow of materials. 

C/S is also of particular utility in storage areas, where little movement or change in scenery is expected. As such, 

C/S can detect diversion from feed storage or from TRU product storage.  C/S also has some ability to detect any 

diversion from the process stream, although this ability may depend on the visibility of areas accessed by the 

diverter and the visibility of any requisite equipment.  
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G. Solution Measurement and Monitoring System, SMMS 

The SMMS measures process conditions such as density, volume, and mass. This monitoring system can detect the 

diversion of material without replacement because of decreases in mass and volume. It may also be able to detect 

diversion of material with replacement due to changes in density.  

H. Plutonium Inventory Measurement System, PIMS 

PIMS is a network of neutron detectors designed to provide Near Real-Time Accountancy (NRTA) of plutonium and 

process conditions. This safeguard should be able to detect any loss of plutonium in solution due to diversion.  

I. Hybrid k-edge/XRF densitometry 

Like many of the safeguards above, the hybrid k-edge densitometer is designed for online TRU measurements. This 

technology may be able to achieve greater sensitivity than current techniques, which would reduce the MUF and 

make protracted diversions more difficult to perpetrate without detection. This safeguard should be able to detect 

any loss of TRU in solution due to diversion.  

J. Lead slowing-down spectroscopy 

 Lead slowing-down spectroscopy is a safeguard under development for the direct measurement of plutonium in 

spent fuel. This technique may be able to measure spent fuel composition with a higher degree of accuracy and 

sensitivity than current NDA techniques. As such, this tool should be able to detect falsification of spent fuel 

composition declarations.  
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9.2 APPENDIX B:  GAMS CODE FOR MIP MODEL 

This is an example for a model with 15 defender strategies and 15 attacker options. 

sets 

k payoff branches /1*9/ 

d defender strategies /1*32768/ 

a attack scenarios /1*15/ 

alias (a,h); 

alias (d,dd); 

 

parameter c(d) 

/ 

$ondelim 

$include stratcosts-15by15.txt 

$offdelim 

/; 

*display c; 

 

table p(d,a) 

$ondelim 

$include pijfile-15by15.txt 

$offdelim 

; 

*display p; 

 

parameter py(k) 

/ 

$ondelim 

$include py_k.csv 

$offdelim 

/; 

*display py; 

 

table yield(k,a) 

$ondelim 

$include yields15.csv 

$offdelim 

; 

*display yield; 

 

scalar M big M /10000/; 

scalar failedattack cost of a failed attack to attacker /0/; 

 

parameter EVY(a) 

         delta(d,a) 

         omega(d,a); 

EVY(a) = sum(k, py(k)*yield(k,a)); 

delta(d,a) = EVY(a)*p(d,a)+c(d); 
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omega(d,a) = EVY(a)*p(d,a)+(1-p(d,a))*failedattack; 

 

variables 

beta     bound variable for attacker payoff 

y(d,a)   joint strategy variable (1 if d and a chosen) 

alpha(a)       attacker choice variable (1 if scenario a chosen) 

OBJ      objective expected value; 

binary variable alpha,y; 

 

EQUATIONS 

  dOBJ            define actual objective function 

  ONEJOINT       only one joint strategy can be chosen 

  JOINTATTACK1(a) if alpha(a)=1 then some y(d 1) must be 1 

  JOINTATTACK2(a) if alpha(a)=1 then some y(d 1) must be 1 

  ONEATTACK      only one attack scenario can be chosen 

  ENFORCEATTACKPAY1(a) makes sure the attacker's payoff is considered 

  ENFORCEATTACKPAY2(a) makes sure the attacker's payoff is considered; 

 

  dOBJ..          OBJ =e= sum((d,a),delta(d,a)*y(d,a)); 

  ONEJOINT..     sum((d,a),y(d,a))=e=1; 

  JOINTATTACK1(a)..  alpha(a) =l= sum(d,y(d,a)); 

  JOINTATTACK2(a)..  sum(d,y(d,a)) =l= 1; 

  ONEATTACK..     sum(a,alpha(a))=e=1; 

  ENFORCEATTACKPAY1(a).. 0=l=(beta-(sum(d,omega(d,a)*sum(h,y(d,h))))); 

  ENFORCEATTACKPAY2(a).. beta-sum(d,omega(d,a)*sum(h,y(d,h)))=l=(1-alpha(a))*M; 

 

  OPTION Reslim = 5000; 

 

MODEL UREX /ALL/ ; 

SOLVE UREX USING MIP MINIMIZING OBJ ; 

DISPLAY y.l,beta.l; 


